An obstacle avoidance method for mobile robots based on fuzzy decision-making
نویسندگان
چکیده
In this paper, an obstacle avoidance method for wheeled mobile robots is proposed, based on selection of the local target points of robot’s movement called “via-points” which are defined in a navigation space, generated by taking into consideration a smooth robot motion. The proposed algorithm utilizes a fuzzy multi-attribute decision-making method in which three fuzzy goals are defined to achieve successful robot navigation by deciding the via-point the robot would proceed at each control step. Via-point is defined as the local target point of a robot’s movement at each decision instance. Three fuzzy goals to achieve successful robot navigation are defined. At each decision step, a set of the candidates of a next via-point in a 2D navigation space is constructed by combining various heading angles and velocities. Given the fuzzy goals, the fuzzy decision making enables the robot to choose the best via-point among the candidates. An efficient scheme for local minimum recovery from trappedin situation is also provided. A series of simulations has been performed to study the effects of associated navigation parameters on the navigation performances. The method has been implemented on an actual mobile robot and experimented in real environments. Results from a series of simulations and experiments conducted in real environments show the validity and effectiveness of the proposed navigation method.
منابع مشابه
Optimal Trajectory Planning of a Mobile Robot with Spatial Manipulator For Spatial Obstacle Avoidance
Mobile robots that consist of a mobile platform with one or many manipulators mounted on it are of great interest in a number of applications. Combination of platform and manipulator causes robot operates in extended work space. The analysis of these systems includes kinematics redundancy that makes more complicated problem. However, it gives more feasibility to robotic systems because of the e...
متن کاملStereovision-Based Fuzzy Obstacle Avoidance Method
This work presents a stereovision-based obstacle avoidance method for autonomous mobile robots. The decision about the direction on each movement step is based on a fuzzy inference system. The proposed method provides an efficient solution that uses a minimum of sensors and avoids computationally complex processes. The only sensor required is a stereo camera. First, a custom stereo algorithm pr...
متن کاملDirect Optimal Motion Planning for Omni-directional Mobile Robots under Limitation on Velocity and Acceleration
This paper describes a low computational direct approach for optimal motion planning and obstacle avoidance of Omni-directional mobile robots within velocity and acceleration constraints on the robot motion. The main purpose of this problem is the minimization of a quadratic cost function while limitation on velocity and acceleration of robot is considered and collision with any obstacle in the...
متن کاملFuzzy Target Tracking and Obstacle Avoidance of Mobile Robots with a Stereo Vision System
In this paper, a two-level hierarchical intelligent control system is developed on a mobile robot to deal with target tracking and obstacle avoidance tasks. A stereo vision subsystem is first introduced. It can perceive video information in the environment to locate objects, including locating targets and obstacles precisely. This subsystem possesses two CCD cameras mounted on the top of a robo...
متن کاملA Fuzzy Local Path Planning and Obstacle Avoidance for Mobile Robots
This paper presents a local fuzzy path planning and obstacle avoidance method based on fuzzy logic. The main idea is to fuzzify the obstacles in the environment and use a fuzzy logic controller to guide the robot not to move too close to the obstacles. The human sense of obstacles and his behavior in obstacle avoidance is provided the Fuzzy Obstacle concept which is used in the obstacle avoidan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Robotica
دوره 24 شماره
صفحات -
تاریخ انتشار 2006